您的位置:主页 > 866488.org >

ic集成电路

时间:2019-10-08 09:33来源:未知 点击:

  预估万亿元,曾道人玄机图挂牌,声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  集成电路(integrated circuit,港台称之为积体电路)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。 它在电路中用字母“ic”(也有用文字符号“n”等)表示。

  集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

  ic集成电路不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。

  一、集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。

  模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。

  数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如vcd、dvd重放的音频信号和视频信号)。

  二、按集成度高低不同,可分为小规模、中规模、大规模及超大规模集成电路四类。

  对模拟集成电路,由于工艺要求较高、电路又较复杂,所以一般认为集成50个以下元器件为小规模集成电路,集成50-100个元器件为中规模集成电路,集成100个以上的元器件为大规模集成电路。

  对数字集成电路,一般认为集成1~10等效门/片或10~100个元件/片为小规模集成电路,集成10~100个等效门/片或100~1000元件/片为中规模集成电路,集成100~10,000个等效门/片或1000~100,000个元件/片为大规模集成电路,集成10,000以上个等效门/片或100,000以上个元件/片为超大规模集成电路。

  三、按其制作工艺不同,可分为半导体集成电路、膜集成电路和混合集成电路三类。

  半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、三极管、二极管等元器件并具有某种电路功能的集成电路;膜集成电路是在玻璃或陶瓷片等绝缘物体上,以“膜”的形式制作电阻、电容等无源器件。无源元件的数值范围可以作得很宽,精度可以作得很高。但目前的技术水平尚无法用“膜”的形式制作晶体二极管、三极管等有源器件,因而使膜集成电路的应用范围受到很大的限制。在实际应用中,多半是在无源膜电路上外加半导体集成电路或分立元件的二极管、三极管等有源器件,使之构成一个整体,这便是混合集成电路。根据膜的厚薄不同,膜集成电路又分为厚膜集成电路(膜厚为1μm~10μm)和薄膜集成电路(膜厚为1μm以下)两种。在家电维修和一般性电子制作过程中遇到的主要是半导体集成电路、厚膜电路及少量的混合集成电路。

  双极型集成电路频率特性好,但功耗较大,而且制作工艺复杂,绝大多数模拟集成电路以及数字集成电路中的ttl、ecl、htl、lsttl、sttl型属于这一类。

  单极型集成电路工作速度低,但输人阻抗高、功耗小、制作工艺简单、易于大规模集成,其主要产品为mos型集成电路。mos电路又分为nmos、pmos、cmos型。

  (1)nmos集成电路是在半导体硅片上,以n型沟道mos器件构成的集成电路;参加导电的是电子。

  (2)pmos型是在半导体硅片上,以p型沟道mos器件构成的集成电路;参加导电的是空穴。

  (3)cmos型是由nmos晶体管和pmos晶体管互补构成的集成电路称为互补型mos集成电路,简写成cmos集成电路。

  五、按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。

  1.电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、av/tv转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(cpu)集成电路、存储器集成电路等。

  2.音响用集成电路包括am/fm高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。

  3.影碟机用集成电路有系统控制集成电路、视频编码集成电路、mpeg解码集成电路、音频信号处理集成电路、音响效果集成电路、rf信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。

  4.录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。

  七、按外形分可分为圆形(金属外壳晶体管封装型,一般适合用于大功率)、扁平型(稳定性好,体积小)和双列直插型。

  bga的全称是ball grid array(球栅阵列结构的pcb),它是集成电路采用有机载板的一种封装法。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配lsi芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(pac)。引脚可超过200,是多引脚lsi用的一种封装。 封装本体也可做得比qfp(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚bga仅为31mm见方;而引脚中心距为0.5mm的304引脚qfp为40mm见方。而且bga不用担心qfp那样的引脚变形问题。 该封装是美国motorola公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,bga 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些lsi厂家正在开发500引脚的bga。 bga的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国motorola公司把用模压树脂密封的封装称为ompac,而把灌封方法密封的封装称为gpac(见ompac和gpac)。

  优点:①封装面积减少;②功能加大,引脚数目增多;③pcb板溶焊时能自我居中,易上锡;④可靠性高;⑤电性能好,整体成本低。

  带缓冲垫的四侧引脚扁平封装。qfp封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和asic等电路中采用此封装。引脚中心距0.635mm,引脚数从84到196左右(见qfp)。

  (ceramic)表示陶瓷封装的记号。例如,cdip 表示的是陶瓷dip。是在实际中经常使用的记号。

  用玻璃密封的陶瓷双列直插式封装,用于ecl ram,dsp(数字信号处理器)等电路。带有玻璃窗口的cerdip 用于紫外线擦除型eprom 以及内部带有eprom的微机电路等。引脚中心距2.54mm,引脚数从8到42。在日本,此封装表示为dip-g(g即玻璃密封的意思)。

  表面贴装型封装之一,即用下密封的陶瓷qfp,用于封装dsp等的逻辑lsi电路。带有窗口的cerquad用于封装eprom电路。散热性比塑料qfp好,在自然空冷条件下可容许1.5~2w的功率。但封装成本比塑料qfp高3~5倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm等多种规格。引脚数从32到368。

  带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。 带有窗口的用于封装紫外线擦除型eprom 以及带有eprom的微机电路等。此封装也称为qfj、qfj-g(见qfj)。

  板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与 基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用 树脂覆 盖以确保可靠性。虽然cob 是最简单的裸芯片贴装技术,但它的封装密度远不如tab 和 倒片 焊技术。

  双侧引脚扁平封装。是sop 的别称(见sop)。以前曾有此称法,现在已基本上不用。

  双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种 。 dip 是最普及的插装型封装,应用范围包括标准逻辑ic,存贮器lsi,微机电路等。 引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny dip 和slim dip(窄体型dip)。但多数情况下并不加 区分, 只简单地统称为dip。另外,用低熔点玻璃密封的陶瓷dip 也称为cerdip(见cerdip)。

  双侧引脚小外形封装。sop 的别称(见sop)。部分半导体厂家采用此名称。

  12、dicp (dual tape carrier package)

  双侧引脚带载封装。tcp(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是tab(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动lsi,但多数为 定制品。另外,0.5mm厚的存储器lsi簿形封装正处于开发阶段。在日本,按照eiaj(日本电子机 械工 业)会标准规定,将dicp命名为dtp。

  扁平封装。表面贴装型封装之一。qfp 或sop(见qfp 和sop)的别称。部分半导体厂家采 用此名称。

  倒焊芯片。裸芯片封装技术之一,在lsi 芯片的电极区制作好金属凸点,然后把金属凸 点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有 封装技 术中体积最小、最薄的一种。 但如果基板的热膨胀系数与lsi 芯片不同,就会在接合处产生反应,从而影响连接的可 靠 性。因此必须用树脂来加固lsi 芯片,并使用热膨胀系数基本相同的基板材料。

  小引脚中心距qfp。通常指引脚中心距小于0.65mm 的qfp(见qfp)。部分导导体厂家采 用此名称。

  (quad fiat package with guard ring)

  带保护环的四侧引脚扁平封装。塑料qfp 之一,引脚用树脂保护环掩蔽,以防止弯曲变 形。 在把lsi 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(l 形状)。 这种封装 在美国motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。

  表面贴装型pga。通常pga 为插装型封装,引脚长约3.4mm。表面贴装型pga 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊pga。因为引脚中心距只有1.27mm,比插装型pga 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑lsi 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。

  j 形引脚芯片载体。指带窗口clcc 和带窗口的陶瓷qfj 的别称(见clcc 和qfj)。部分半 导体厂家采用的名称。

  无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是 高 速和高频ic 用封装,也称为陶瓷qfn 或qfn-c(见qfn)。

  触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现 已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷lga,应用于高速 逻辑 lsi 电路。 lga 与qfp 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻 抗 小,对于高速lsi 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用 。预计 今后对其需求会有所增加。

  芯片上引线封装。lsi 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片 的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面 附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。

  薄型qfp。指封装本体厚度为1.4mm 的qfp,是日本电子机械工业会根据制定的新qfp 外形规格所用的名称。

  陶瓷qfp 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。 封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑lsi 开发的一种 封装, 在自然空冷条件下可容许w3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的lsi 逻辑用封装,并于1993 年10 月开始投入批量生产。

  多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可 分 为mcm-l,mcm-c 和mcm-d 三大类。 mcm-l 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低 。 mcm-c 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合ic 类似。两者无明显差别。布线密度高于mcm-l。

  mcm-d 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或si、al 作为基板的组 件。 布线密谋在三种组件中是最高的,但成本也高。

  小形扁平封装。塑料sop 或ssop 的别称(见sop 和ssop)。部分半导体厂家采用的名称。

  按照jedec(美国联合电子设备委员会)标准对qfp 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准qfp(见qfp)。

  美国olin 公司开发的一种qfp 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空 冷 条件下可容许2.5w~2.8w 的功率。日本新光电气工业公司于1993 年获得特许开始生产 。

  qfi 的别称(见qfi),在开发初期多称为msp。qfi 是日本电子机械工业会规定的名称。

  32、opmac(over molded pad array carrier)

  模压树脂密封凸点陈列载体。美国motorola 公司对模压树脂密封bga 采用的名称(见 bga)。

  (printed circuit board leadless package)

  印刷电路板无引线封装。日本富士通公司对塑料qfn(塑料lcc)采用的名称(见qfn)。引脚中心距有0.55mm和0.4mm两种规格。目前正处于开发阶段。

  塑料扁平封装。塑料qfp 的别称(见qfp)。部分lsi 厂家采用的名称。

  陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷pga,用于高速大规模 逻辑 lsi 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256引脚的塑料pga。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型pga(碰焊pga)。(见表面贴装型pga)。

  驮载封装。指配有插座的陶瓷封装,形关与dip、qfp、qfn相似。在开发带有微机的设备时用于评价程序确认操作。例如,将eprom插入插座进行调试。这种封装基本上都是定制品,市场上不怎么流通。

  带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形 , 是塑料制品。美国德克萨斯仪器公司首先在64k 位dram 和256kdram 中采用,现在已经 普 及用于逻辑lsi、dld(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 j 形引脚不易变形,比qfp 容易操作,但焊接后的外观检查较为困难。 plcc 与lcc(也称qfn)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的j 形引脚封装和用塑料制作的无引脚封装(标记为塑料lcc、pc lp、p -lcc 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 j 形引 脚的封装称为qfj,把在四侧带有电极凸点的封装称为qfn(见qfj 和qfn)。

  (plastic teadless chip carrier)(plastic leaded chip currier)

  有时候是塑料qfj 的别称,有时候是qfn(塑料lcc)的别称(见qfj 和qfn)。部分

  lsi 厂家用plcc 表示带引线封装,用p-lcc 表示无引线、qfh

  四侧引脚厚体扁平封装。塑料qfp 的一种,为了防止封装本体断裂,qfp 本体制作得 较厚(见qfp)。部分半导体厂家采用的名称。

  四侧i 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈i 字 。 也称为msp(见msp)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面 积小 于qfp。 日立制作所为视频模拟ic 开发并使用了这种封装。此外,日本的motorola 公司的pll ic 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。

  四侧j形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈j字形。是日本电子机械工业会规定的名称。引脚中心距1.27mm。

  材料有塑料和陶瓷两种。塑料qfj 多数情况称为plcc(见plcc),用于微机、门陈列、 dram、assp、otp 等电路。引脚数从18至84。

  陶瓷qfj 也称为clcc、jlcc(见clcc)。带窗口的封装用于紫外线擦除型eprom 以及 带有eprom 的微机芯片电路。引脚数从32 至84。

  四侧无引脚扁平封装。表面贴装型封装之一。现在多称为lcc。qfn是日本电子机械工业会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比qfp小,高度比qfp低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到qfp的引脚那样多,一般从14到100左右。 材料有陶瓷和塑料两种。当有lcc标记时基本上都是陶瓷qfn。电极触点中心距1.27mm。

  塑料qfn 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外,还有0.65mm 和0.5mm 两种。这种封装也称为塑料lcc、pclc、p-lcc 等。

  四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(l)型。基材有 陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时, 多数情 况为塑料qfp。塑料qfp 是最普及的多引脚lsi 封装。不仅用于微处理器,门陈列等数字 逻辑lsi 电路,而且也用于vtr 信号处理、音响信号处理等模拟lsi 电路。引脚中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。

  日本将引脚中心距小于0.65mm 的qfp 称为qfp(fp)。但现在日本电子机械工业会对qfp 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 qfp(2.0mm~3.6mm 厚)、lqfp(1.4mm 厚)和tqfp(1.0mm 厚)三种。

  另外,有的lsi 厂家把引脚中心距为0.5mm 的qfp 专门称为收缩型qfp 或sqfp、vqfp。 但有的厂家把引脚中心距为0.65mm 及0.4mm 的qfp 也称为sqfp,至使名称稍有一些混乱 。 qfp 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已 出现了几种改进的qfp 品种。如封装的四个角带有树指缓冲垫的bqfp(见bqfp);带树脂 保护 环覆盖引脚前端的gqfp(见gqfp);在封装本体里设置测试凸点、放在防止引脚变形的专 用夹 具里就可进行测试的tpqfp(见tpqfp)。 在逻辑lsi 方面,不少开发品和高可靠品都封装在多层陶瓷qfp 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷qfp(见gerqa d)。

  小中心距qfp。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的qfp(见qfp)。

  陶瓷qfp 的别称。部分半导体厂家采用的名称(见qfp、cerquad)。

  四侧引脚带载封装。tcp 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利 用 tab 技术的薄型封装(见tab、tcp)。

  四侧引脚带载封装。日本电子机械工业会于1993 年4 月对qtcp 所制定的外形规格所用 的 名称(见tcp)。

  四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚 中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板 。是 比标准dip 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采 用了些 种封装。材料有陶瓷和塑料两种。引脚数64。

  收缩型dip。插装型封装之一,形状与dip 相同,但引脚中心距(1.778mm)小于dip(2.54 mm),

  因而得此称呼。引脚数从14 到90。也有称为sh-dip 的。材料有陶瓷和塑料两种。

  单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插 座 的组件。标准simm 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格 。 在印刷基板的单面或双面装有用soj 封装的1 兆位及4 兆位dram 的simm 已经在个人 计算机、工作站等设备中获得广泛应用。至少有30~40%的dram 都装配在simm 里。

  单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时 封 装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形 状各 异。也有的把形状与zip 相同的封装称为sip。

  dip 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体dip。通常统称为dip(见 dip)。

  dip 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体dip。通常统称为dip。

  i 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈i 字形,中心 距 1.27mm。贴装占有面积小于sop。日立公司在模拟ic(电机驱动用ic)中采用了此封装。引 脚数 26。

  (small out-line integrated circuit)

  j 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈j 字形,故此 得名。 通常为塑料制品,多数用于dram 和sram 等存储器lsi 电路,但绝大部分是dram。用so j 封装的dram 器件很多都装配在simm 上。引脚中心距1.27mm,引脚数从20 至40(见simm )。

  按照jedec(美国联合电子设备工程委员会)标准对sop 所采用的名称(见sop)。

  无散热片的sop。与通常的sop 相同。为了在功率ic 封装中表示无散热片的区别,有意 增添了nf(non-fin)标记。部分半导体厂家采用的名称(见sop)。

  小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(l 字形)。材料有 塑料 和陶瓷两种。另外也叫sol 和dfp。

  sop 除了用于存储器lsi 外,也广泛用于规模不太大的assp 等电路。在输入输出端子不 超过10~40 的领域,sop 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8 ~44。

  另外,引脚中心距小于1.27mm 的sop 也称为ssop;装配高度不到1.27mm 的sop 也称为 tsop(见ssop、tsop)。还有一种带有散热片的sop。

  1947年:贝尔实验室肖特莱等人发明了晶体管,这是微电子技术发展中第一个里程碑;

  1958年:仙童公司robert noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史;

  1960年:h h loor和e castellani发明了光刻工艺;

  1963年:f.m.wanlass和c.t.sah首次提出cmos技术,今天,95]以上的集成电路芯片都是基于cmos工艺;

  1964年:intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍;

  1966年:美国rca公司研制出cmos集成电路,并研制出第一块门阵列(50门);

  1967年:应用材料公司(applied materials)成立,现已成为全球最大的半导体设备制造公司;

  1971年:intel推出1kb动态随机存储器(dram),标志着大规模集成电路出现;

  1971年:全球第一个微处理器4004由intel公司推出,采用的是mos工艺,这是一个里程碑式的发明;

  1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(vlsi)时代的来临;

  1979年:intel推出5mhz 8088微处理器,之后,ibm基于8088推出全球第一台pc;

  1988年:16m dram问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(vlsi)阶段;

  1989年:486微处理器推出,25mhz,1μm工艺,后来50mhz芯片采用 0.8μm工艺;

  1995年:pentium pro, 133mhz,采用0.6-0.35μm工艺;

  1999年:奔腾Ⅲ问世,450mhz,采用0.25μm工艺,后采用0.18μm工艺;

  2007年:基于全新45纳米high-k工艺的intel酷睿2 e7/e8/e9上市。

  2009年:intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。

  1965年-1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产 品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件;

  1978年-1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化;

  1990年-2000年:以908工程、909工程为重点,以cad为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。

  这种方法是在ic未焊入电路时进行的,一般情况下可用万用表测量各引脚对应于接地引脚之间的正、反向电阻值,并和完好的ic进行 较。

  这是一种通过万用表检测ic各引脚在路(ic在电路中)直流电阻、对地交直流电压以及总工作电流的检测方法。这种方法克服了代换试验法需要有可代换ic的局限性和拆卸ic的麻烦,是检测ic最常用和实用的方法。

  这是一种在通电情况下,用万用表直流电压挡对直流供电电压、外围元件的工作电压进行测量;检测ic各引脚对地直流电压值,并与正常值相较,进而压缩故障范围,出损坏的元件。测量时要注意以下八点:

  (1)万用表要有足够大的内阻,少要大于被测电路电阻的10倍以上,以免造成较大的测量误差。

  (2)通常把各电位器旋到中间位置,如果是电视机,信号源要采用标准彩条信号发生器。

  (3)表笔或探头要采取防滑措施。因任何瞬间短路都容易损坏ic。可采取如下方法防止表笔滑动:取一段自行车用气门芯套在表笔尖上,并长出表笔尖约0.5mm左右,这既能使表笔尖良好地与被测试点接触,又能有效防止打滑,即使碰上邻近点也不会短路。

  (4)当测得某一引脚电压与正常值不符时,应根据该引脚电压对ic正常工作有无重要影响以及其他引脚电压的相应变化进行分析,能判断ic的好坏。

  (5)ic引脚电压会受外围元器件影响。当外围元器件发生漏电、短路、开路或变值时,或外围电路连接的是一个阻值可变的电位器,则电位器滑动臂所处的位置不同,都会使引脚电压发生变化。

  (6)若ic各引脚电压正常,则一般认为ic正常;若ic部分引脚电压异常,则应从偏离正常值最大处入手,检查外围元件有无故障,若无故障,则ic很可能损坏。

  (7)对于动态接收装置,如电视机,在有无信号时,ic各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随信号大小和可调元件不同位置而变化的反而不变化,就可确定ic损坏。

  (8)对于多种工作方式的装置,如录像机,在不同工作方式下,ic各引脚电压也是不同的。

  为了掌握ic交流信号的变化情况,可以用带有db插孔的万用表对ic的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入db插孔;对于无db插孔的万用表,需要在正表笔串接一只0.1~0.5μf隔直电容。该法适用于工作频率较低的ic,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,只能供参考。

  该法是通过检测ic电源进线的总电流,来判ic好坏的一种方法。由于ic内部绝大多数为直接耦合,ic损坏时(如某一个pn结击穿或开路)会引起后级饱和与截止,使总电流发生变化。所以通过测量总电流的方法可以判ic的好坏。也可用测量电源通路中电阻的电压降,用欧姆定律计算出总电流值。

  近几年,中国集成电路产业取得了飞速发展。中国集成电路产业已经成为全球半导体产业关注的焦点,即使在全球半导体产业陷入有史以来程度最严重的低迷阶段时,中国集成电路市场仍保持了两位数的年增长率,凭借巨大的市场需求、较低的生产成本、丰富的人力资源,以及经济的稳定发展和宽松的政策环境等众多优势条件,以京津唐地区、长江三角洲地区和珠江三角洲地区为代表的产业基地迅速发展壮大,制造业、设计业和封装业等集成电路产业各环节逐步完善。

  2006年中国集成电路市场销售额为4862.5亿元,同比增长27.8]。其中ic设计业年销售额为186.2亿元,比2005年增长49.8]。

  2007年中国集成电路产业规模达到1251.3亿元,同比增长24.3],集成电路市场销售额为5623.7亿元,同比增长18.6]。而计算机类、消费类、网络通信类三大领域占中国集成电路市场的88.1]。

  目前,中国集成电路产业已经形成了ic设计、制造、封装测试三业及支撑配套业共同发展的较为完善的产业链格局,随着ic设计和芯片制造行业的迅猛发展,国内集成电路价值链格局继续改变,其总体趋势是设计业和芯片制造业所占比例迅速上升。

开码| 香港挂牌买码论坛| 平特生肖肖复式统计器| 正版历史挂牌号码记录| 九龙印刷图库看图区| 香港开奖结果历史查询| 管家婆论坛手机站2275十二码中特| 破解快三单双大小规律| 生肖复式组数公式表| 蓝月亮论码堂心水论坛|